Cytoplasmic polyadenylation element binding protein (CPEB): a prion-like protein as a regulator of local protein synthesis and synaptic plasticity
نویسنده
چکیده
1.INTRODUCTION With this paper I would like to describe you what is my research project here at Columbia and how I am trying to address the many questions underlying my project by working everyday in the lab. But before doing this I feel somehow obliged to give you an introduction on the basic concepts of neurobiology. Therefore we will start with a brief definition and description of what is a neuron, how neurons interact to form synapse and neural circuits, how synapse activity can be modified and finally how these changes in synaptic activity underlie high cognitive processes such as learning and memory. After providing you this, I hope not too boring introduction, I will go deeper into the molecular aspects of these phenomenon and I will illustrate you the main goal of my research, which is to characterize the role of a particular protein called Cytoplasmic Polyadenylation Element Binding protein with respect to the morphological and physiological changes that occur at the synapse after neuronal stimulation.
منابع مشابه
Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II.
Phosphorylation of cytoplasmic polyadenylation element binding protein (CPEB) regulates protein synthesis in hippocampal dendrites. CPEB binds the 3' untranslated region (UTR) of cytoplasmic mRNAs and, when phosphorylated, initiates mRNA polyadenylation and translation. We report that, of the protein kinases activated in the hippocampus during synaptic plasticity, calcium/calmodulin-dependent p...
متن کاملRNA-binding profiles of Drosophila CPEB proteins Orb and Orb2.
Localized protein translation is critical in many biological contexts, particularly in highly polarized cells, such as neurons, to regulate gene expression in a spatiotemporal manner. The cytoplasmic polyadenylation element-binding (CPEB) family of RNA-binding proteins has emerged as a key regulator of mRNA transport and local translation required for early embryonic development, synaptic plast...
متن کاملProtein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB).
Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change in CPEB activity: a robust "protein-onl...
متن کاملA Neuronal Isoform of the Aplysia CPEB Has Prion-Like Properties
Prion proteins have the unusual capacity to fold into two functionally distinct conformations, one of which is self-perpetuating. When yeast prion proteins switch state, they produce heritable phenotypes. We report prion-like properties in a neuronal member of the CPEB family (cytoplasmic polyadenylation element binding protein), which regulates mRNA translation. Compared to other CPEB family m...
متن کاملThe Role of Functional Prion-Like Proteins in the Persistence of Memory.
Prions are a self-templating amyloidogenic state of normal cellular proteins, such as prion protein (PrP). They have been identified as the pathogenic agents, contributing to a number of diseases of the nervous system. However, the discovery that the neuronal RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB), has a prion-like state that is involved in the stabiliza...
متن کامل